hypermill Israel is the official re-seller in Israel of Open Mind
hypermill.co.il

2.5D Machining: Milling and Drilling

Efficient programming with hyperMILL®

Typical 2.5D drilling and milling tasks can be programmed efficiently using hyperMILL® CAM software.

hyperMILL® 2.5D machining is typically applied to plate processing in tool and mold manufacturing. Pocket machining, plane levels, contours and drill holes present very unique challenges here. Intelligent me­cha­nisms, such as the recognition of pocket features can now help the CAM user to program faster than ever before. With its high-performance cutting functions (HPC), hyperMILL® MAXX Machining will boost machining per­for­mance during 2.5D roughing.

Videos: 2.5D CAM strategies

Milling: 2.5D strategies

  • Pocket Milling
  • Rectangular Pocket
  • Inclined Pocketing
  • Contour Milling
  • Contour Milling on 3D models
  • Inclined Contouring
  • Chamfer Milling on 3D models
  • Rest Machining
  • Face Milling
  • Playback Milling
  • Plunge Milling
  • Multi-axis indexing with fixed tool angle

Drilling: 2.5D strategies

  • Centring
  • Simple Drilling
  • Drilling with chip break
  • Drilling with pecking cycle
  • Reaming
  • Tapping
  • Thread Milling
  • Boring
  • Helical Drilling
  • Drilling circular pockets
  • Gun Drilling
Pocket Milling

Pocket Milling is suitable for the machining of straight and inclined pockets with any contour. This includes the automatic recognition of islands and rest material areas. Open and closed pockets can also be machined without any issues when using the ‘Pocket Milling’ strategy.

Contour Milling

Contour Milling optimizes the machining of open and closed contours with the option of path compensation, automatic rest material detection and the machining of undercut contours that can be difficult to access. The ‘Contour Milling on 3D Model’ strategy also includes:

  • Collision check for the 3D model
  • Automatic contour optimization and sorting
  • Trimming of toolpaths to stock or model
  • Automatic approach and retract strategies
Rest Machining

During 2.5D contour and pocket machining, some areas cannot be machined with larger tools. The rest material strategy detects these component features and calculates separate tool­paths that can be machined with smaller tools.

Rest Machining

During 2.5D contour and pocket machining, some areas cannot be machined with larger tools. The rest material strategy detects these component features and calculates separate tool­paths that can be machined with smaller tools.

Rest Machining
Multi-axis indexing

All 2.5D machining strategies can also be app­lied to multi-axis indexing with a fixed tool angle. During this process, the orientation of machining is defined using a frame. Simple frame definition and management assist the user in programming operations with tilted fourth and fifth axes. With transformations in the NC programs, users can easily and conveniently create programs for multiple components clamped within a single plane or in a tomb­stone fixture, for instance. All traverse movements are checked for collisions and path-optimized.

Back to top
Accessibility